Meticulously And Systematically Deconstructed
You will need: a powerful mass driver, or ideally lots of them; ready access to roughly 2*10^32J
Method: Basically, what we're going to do here is dig up the Earth, a big chunk at a time, and boost the whole lot of it into orbit. Yes. All six sextillion tons of it. A mass driver is a sort of oversized electromagnetic railgun, which was once proposed as a way of getting mined materials back from the Moon to Earth - basically, you just load it into the driver and fire it upwards in roughly the right direction. We'd use a particularly powerful model - big enough to hit escape velocity of 11 kilometers per second even after atmospheric considerations - and launch it all into the Sun or randomly into space.
Alternate methods for boosting the material into space include loading the extracted material into space shuttles or taking it up via space elevator. All these methods, however, require a - let me emphasize this - titanic quantity of energy to carry out. Building a Dyson sphere ain't gonna cut it here. (Note: Actually, it would. But if you have the technology to build a Dyson sphere, why are you reading this?) See No. 6 for a possible solution.
If we wanted to and were willing to devote resources to it, we could start this process RIGHT NOW. Indeed, what with all the gunk left in orbit, on the Moon and heading out into space, we already have done.
Earth's final resting place: Many tiny pieces, some dropped into the Sun, the remainder scattered across the rest of the Solar System.
Earliest feasible completion date: Ah. Yes. At a billion tons of mass driven out of the Earth's gravity well per second: 189,000,000 years.
Source: this method arose when Joe Baldwin and I knocked our heads together by accident.
Feasibility rating: 6/10
You will need: a powerful mass driver, or ideally lots of them; ready access to roughly 2*10^32J
Method: Basically, what we're going to do here is dig up the Earth, a big chunk at a time, and boost the whole lot of it into orbit. Yes. All six sextillion tons of it. A mass driver is a sort of oversized electromagnetic railgun, which was once proposed as a way of getting mined materials back from the Moon to Earth - basically, you just load it into the driver and fire it upwards in roughly the right direction. We'd use a particularly powerful model - big enough to hit escape velocity of 11 kilometers per second even after atmospheric considerations - and launch it all into the Sun or randomly into space.
Alternate methods for boosting the material into space include loading the extracted material into space shuttles or taking it up via space elevator. All these methods, however, require a - let me emphasize this - titanic quantity of energy to carry out. Building a Dyson sphere ain't gonna cut it here. (Note: Actually, it would. But if you have the technology to build a Dyson sphere, why are you reading this?) See No. 6 for a possible solution.
If we wanted to and were willing to devote resources to it, we could start this process RIGHT NOW. Indeed, what with all the gunk left in orbit, on the Moon and heading out into space, we already have done.
Earth's final resting place: Many tiny pieces, some dropped into the Sun, the remainder scattered across the rest of the Solar System.
Earliest feasible completion date: Ah. Yes. At a billion tons of mass driven out of the Earth's gravity well per second: 189,000,000 years.
Source: this method arose when Joe Baldwin and I knocked our heads together by accident.
Feasibility rating: 6/10
No comments:
Post a Comment